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Cellular automaton model for the simulation of laser dynamics
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The classical modeling approach for laser study relies on the differential equations. In this paper, a cellular
automaton model is proposed as an alternative for the simulation of population dynamics. Even though the
model is simplified it captures the essence of laser phenomendiddkiere is a threshold pumping rate that
depends inversely on the decaying lifetime of the atoms and the photon6i)ashepending on these lifetimes
and on the pumping rate, a constant or an oscillatory behavior can be observed. More complex behaviors such
as spiking and pattern formation can also be studied with the cellular automaton model.
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I. INTRODUCTION carried out and their results are presented in Sec. IV. Finally,
the conclusions of this study are explained in Sec. V.

In a laser system, the interactions among simple atoms
and the radiation they produce can give rise to cooperative
phenomen#l]. However, the usual approach for its study is
based on very detailed microscopical equations, which some- A laser is a device that generates or amplifies electromag-
how mask the action of such cooperative properties. In thigetic radiation based on the stimulated emission phenom-
study, a simple cellular automaton model is presented, whicknon. The basic components of a laser systentiaralaser
reproduces much of the laser phenomenology, special attemedium—an appropriate collection of atoms, molecules, ions
tion being focused on these self-organizing cooperative efer a semiconductor cryst@hese elements will generally be
fects. Our model is interesting in that it illustrates the emer+eferred to as “atoms); (2) a pumping processghat excites
gence of laser properties as cooperative phenomena based elrctrons from these atoms to upper energy levels, due to
simple underlying rules. It can also be useful in calculatingsome external electrical, optical, or chemical energy source;
laser output in situations which are difficult to treat with the (3) optical feedback elementbat reflect repeatedly the ra-
traditional approach based on the resolution of detailed difdiation beam into the laser mediufim a laser oscillator or
ferential equation$§2,3]. One example is when dealing with allow it to pass only once through (in a laser amplifiex
complex boundary conditions or numerical difficulties in the  The working principle of laser istimulated emissian.e.,
integration of the equations. an excited atom can decay to a lower state stimulated by the

Cellular automatd4,5] are a class of spatially and tem- presence of a photon with energy equal to the difference
porally discrete mathematical systems, characterized by locletween the two energy levels, emitting a second photon
interaction and synchronous dynamical evolution. They havavith the same frequency and propagating in the same direc-
the ability to generate a very complex behavior from sets ofion. The process of absorption has the same probability, so
components that interact locally with relatively simple rules.stimulated emission dominates only when a population in-
They provide good models for a wide variety of physical version is induced in the material by some pumping
systems[6,7] exhibiting cooperative phenomena, such asmechanism.
magnetization in solid§8], reaction-diffusion processég], A simplified but yet realistic model of many real lasers is
fluid dynamics for complex situatiod40], growth phenom- the four-level laser system shown in Fig. 1. The population
ena[11], etc. As an example of an application particularly dynamics of a lasethe variation with time in the number of
close to laser dynamics, a cellular automaton model has bedaser photons and in the population inversion, or number of
recently applied to successfully study the excited-state dyelectrons in the upper laser level minus the number of elec-
namics of atomic oxygen, which play a prominent role introns in the lower laser levels usually described as a sys-
creating the aurora boreali$2]. tem of coupled differential equations callddser rate

This paper is organized as follows. Section Il presents a&quations
brief review of laser dynamics including the laser phenom- The rate equations can be put into their simplest forms
enology that our model attempts to reproduce. Section liwhen the lifetimes ofE, and E; level electrons are negli-
describes the cellular automaton model. The simulations argible as compared to the lifetime d, level electrons.

Therefore theE; level electron population iN,;=0, and

thus the population inversion is approximately equal to the
*Present address: Centro Universitario deristg, Universidad de  upper laser level populatioM(t)=N,(t) —N(t)=Ny(t);
Extremadura, 06800 Migla (Badajo2, Spain. Electronic address: and the absorption of laser photons by electrons at Byés
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ENERGY LEVELS characteristic of most solid-state and semiconductor lasers,
PUMPING which have a substantially longer decay time of the upper
laser level than the decay time of the photons in the laser

cavity: 7,> 7. Laser spiking and relaxation oscillations are

Ej \ STll}‘I’{fngSEIOR not observed, on the other hand, in most gas lasers, which

o usually have decay times of the same order of magnitude,
Ta™~ T
\ The steady-state solution to the rate equations above the
threshold(i.e., with laser emissionis
E S ( o
N ! ()
e | » POPULATION = ,
L ASEI: INVERSION * Krg
ACTION 1
Ng=7¢| R— ——|. 4

E; s Tc( Krare (4)

Eo N In order for this solution to have a physical meaning, the
number of photons), has to be greater than zero. The mini-
mum value ofR producing a laser emission in the cavity,

POPULATION known asthreshold pumping rate Rs found as
FIG. 1. Schematic view of a four-level laser system. 1
Ri= . 5
t K7a7e ®)

levelsEy and E, can be considered, and the rate equations

are a system of two coupled differential equatip2:]: For the case when the spiking behavior in the laser has

relaxed to small-amplitude fluctuations, a linearized small-

dn(t) —KN(t)n(t)— n(t) (1) signal analysis of the rate equations about the steady-state
dt Te solution can be carried out. Following two different situa-
tions arise.
dN(t) N(t) (@) Nonspiking lasersFor lasers in whichr,~ 7., the
g~ R~ —KN(®n(). (2 solutions fom(t) andN(t) are real exponentials. The system

é is overdamped and the response of the laser to any perturba-

tion dies out exponentially towards the steady state. The so-
lution is a stable node.

(b) Relaxation oscillationsWhen 7,> 7. the solutions
have an exponentially damped sinusoidal form towards the
steady-state values. The system responds to any perturbation
gxhibiting relaxation oscillations. The solution is a stable fo-
cus. Therelaxation-oscillation frequengyften referred to as
g_piking frequencyis found as

HereR is the pumping rater, is the decay time of the upper
laser level E,), 7. is the decay time of the laser photons in
the cavity, andK is a constant called “coupling constant.”
The first equation reflects the variation with time of the num-
ber of laser photons)(t), which is related to the laser beam
intensity. The second equation represents the temporal vari
tion of the population inversioM(t). This is a set of two
coupled nonlinear equations due to the presence of the pro
uct termKN(t)n(t). 1 R
Laser operation does not generally produce a smooth and wsp= \/( —_
continuous response, but exhibits different kinds of charac- 27a Ry

teristic transient or mod.ulatlo.n b_ehawors S.U.Ch as spiking, The necessary condition for the appearance of the relax-
relaxation oscillation, gain switchind.aser spiking in par-

. ) X ation oscillations is that the quantity inside the square root be
ticular, refers to the pulses that typically occur during the q y q

C ositive, yieldin

initial turn-on phase of many lasers. In these cases, the lasBf y 9

signal presents a sequence of sharp, large-amplitude narrow R\?2
Ta ( )

2 1

TaTc

R4
r-

. (6)

pulses or “spikes.” Each spike is typically a fraction of a

microsecond wide, and they are separated by a few micro- a, v (7)
seconds. In some lasers, the spiking behavior jumps in an Tc 4 5—1
erratic way. In other cases, or under more stable conditions, R;

it is possible to obtain a more regular spiking behavior, in
which the amplitude of the spikes gradually damps out with
time into a relaxation process. These are sometimes called
relaxation oscillations and include lasers with large- Cellular automatdCA) are fully discrete dynamical sys-
amplitude oscillations when enough time has elapsed for theems, where the states are chosen in a finite set and distrib-
amplitude to relax. This kind of behavior varies for the dif- uted on a discrete regular lattice, and the time evolution is
ferent types of lasers. The spiking oscillatory response isun synchronously in all the sites of this lattice and each site

Ill. CELLULAR AUTOMATA MODEL
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changes its state according to a local rule that only depends (iii) If c;(t)>0 and there is one photop for which
upon its neighboring values. Despite the simplicity of theira’(t): 7o, then
construction, CA are found to be capable of a diverse and

complex behavior and are often used as a prototype for the ci(t+1)=c;(t)—1.
analysis of the spontaneous emergence of ordered behavior ~
in spatially extended systems that are locally coupled. (iv) If a(t)=1 anda;(t) =74, then

A. States of the cells a(t+1)=0.

We consider a system composed of a square lattice of These transition rules represent the different physical pro-
N.=LXL cells with periodic boundary conditions. Two cesses that function at the microscopical level in a laser sys-
variablesa;(t) andc;(t) are associated to each node of thistem. Rule(i) represents the pumping process. Riilemod-
lattice. The first oneg;(t), represents the state of the elec- els the stimulated emission—if the electronic state of a cell
tron in nodei at a given timet. An electron in the laser has a value of;(t)=1 and the number of laser photons in
ground state takes the valag(t)=0, while an electron in the neighborhood is greater than a certain threshold, then at
the upper laser state takes the vahjét)=1. A temporal the timet+1 a new photon will be created in that cell and
variablea;(t) €{0,1,2 . .. ,7.} is also introduced in order to the electron will decay to the ground level. Ruii#) repre-
take into account the finite time,, for which an electron ~Sents the photon decay. Ruig) represents the electron de-
can remain in the upper state. If the electron is in the basgay in a way similar to ruléiii)—after timer, of the excited
state, thers, (t)=0, otherwisea, (t+1)=2,(t)+ 1 until the electrons, those electrons will decay to the ground level. To

. . ~ simplify the model as much as possible, we consider this
maximum valuer, IS reached and thea(t+1)=0. decay to be entirely nonradiative, i.e., spontaneous emission

The second variable;(t) €{0,1,2 ... ,M} represents the

b £ oh . g s | h is not taken into account. Also, as in an ideal four-level laser
number of photons in nodeat timet. A large enough upper o honylation of leveE, is negligible, stimulated absorp-

value of M is taken to avoid saturatipn of the system. There;io, has not been considered.

is also another temporal variable/(t) {0,1,2 ... ,7c}, Additionally, in order to represent the noise level ob-

which measures the amount of time since a phojon served in practicétypically of the order of one noise photon

€{1,2,... M} was created at node 7. is the lifetime of  per cavity modg we introduce a small continuous noise

each photon. For a given phot@rﬁ{(H 1)=E{(t) +1 until level of random photons in the laser mode at every time step.

the lifetime 7, is reached and theEf(H— 1)=0. This is done by setting;(t+1)=c;(t)+1 for a number of

cells smaller than 0.01% of the total number of system cells,

whose positions are randomly chosen. This n¢édeng with

the population inversion induced by pumpjng responsible
The neighborhood considered is th@ore neighborhood  for the initial start up of the laser process, and can prevent

each cell having nine neighbors: the cell itself, its four nearthe eventual extinction of this process, in case the number of

est neighborgsituated in the positions north, south, east, andaser photons drops down to negligible values.

wes), and the four next neighbo(® the positions northeast,

southeast, northwest, and southwest IV. SIMULATIONS

B. Neighborhood

C. Transition rules The simulations were carried out using lattices of 200
. ) . X200 and 30& 300 cells. Three parameters determine the

The time evolution of the CA is given by a set of rules response of the system: the pumping probabilifythe life-
which determines the state of any particular cell of the SYStime of photons £,), and the lifetime of excited electrons
tem at timet+ 1, depending on the state of the cells included(T ). The pumping probability introduced in the CA model
in its neighborhoo~d. at time The evolution of the temporal 4 ?inearly related to the constant pumping rRtécluded in
variablesa;(t) andci(t) was described beforehand. Here wethe rate equations, as explained in the Appendix. Thus the
describe only the evolution af;(t) andc;(t). laser rate equations’ predictidieq. (5)] for the dependence

(i) If a;(t)=0, then of threshold pumping rat®, with the lifetimesr, and . can

a(t+1)=1 with probability). be expressed for the threshold pumping probabiityas

1

(i) If & (t)=1 andl';(t) =S peignpor&i(t) > 8, then A=——, ®
K'r,7e
Ci(t+ 1):Ci(t)+1,
whereK’ is a constant.
a(t+1)=0, Figure 2 shows the threshold pumping probabiktyer-

sus the lifetime of the upper laser level,] and the cavity
wherel'; is the number of photons included in the neighbor-lifetime 7.. Each point has been obtained in the following
hood of the celi and & is a threshold value, which has been manner. After a transient time, the system evolves for 200

taken to be 1 in our simulations. time steps and the average number of laser photams's(
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(b) FIG. 3. Dependence of the threshold pumping probability
r from the CA laser model versus,7., plotted on a logarithmic
107 —a— 1 =10 |] scale. The dots correspond to the results of the simulations and the
-\- —o— 1.=20 continuous line to the theoretical prediction of the laser rate equa-
o . —A— 1 =50 tions, i.e., Eq(8). 7, and 7. are measured in time steps.
\'\, "~ —v— 1, =200 _
“~_ \-\_\:‘-\.\_\_ laser photons present;(0)=0], except a small fraction
< 1075 ‘\\‘\A\ \‘w.,:"-,__ < (0.01%) of noise photons. In each experiment, the total
0.9, L™
. aa, SCeene number of laser photonsn(t)inN;lci(t), and the total
A . . .
\'\v\'\ Hhaaa, number of electrons in the upper laser stgiepulation in-
Ty versiorn, N(t)=2!\':C a;(t) are measured. In order to classify
3 vy Tvey i=1 ) ) .
107 E the range of values of the parameters for which oscillations
. or a constant regime in(t), andN(t) appear, the Shannon
2 3 4 5 678910 20 30 entropy S of the distribution of values taken by(t) and
T, N(t) is calculated. This is carried out by dividing the range

_ N of values taken in 1Dintervals, and computing the fre-
FIG. 2. Threshold pumping probability; from the CA laser quencyf; at which the magnitude value lies inside every

model: (&) \; dependence on the upper laser level lifetimefor  particular nonvoid interval. The Shannon entropy is ex-
different values of the cavity lifetime.; (b) \; dependence om, pressed as

for different values ofr, . Both figures are plotted on a logarithmic
scale.r, and 7, are measured in time steps. m

_ _ S\, 7e,7)=—2, filog, f;, (9)
recorded. For each pair of valuesandr,, the procedure is e SRR
repeated for values of the pumping probabiliteganging ] o )
from 0.0001 to 0.1. If the laser action does not initiate in thev;/]herem IS thei ”UTbher oLnonvmd mtervals}. ';'QU“T 4 SZC_’WS_
system,n is approximately equal to the number of noiset e contour plot of the Shannon entropy of the values distri-

photons () introduced. When the laser action starts, pho-grt'oﬂ fg tf;gﬁ;?bﬁgtgf;?es%rbﬁ);gteo drsf())’r ?[Learf\l/xjgevsall;e
tons are produced by stimulated emissjura rule (ii)], and Th;ck;ack line is trl?e theoretical stability curve: ™
the average number of photons is greater thgn Thus,\, y :

can be computed as the minimum value of the pumping R

probability for which the average number of photons is (
higher than a given reference valng;,. In our simulations, Ta _

we have takem,;,=1.25n,,. The number of noise photons Tc 4< R ) '

(nnp) is the number of noise photons introduced in each time

step multiplied by the lifetime of each laser photon.

Figure 3 shows the threshold pumping probabiltyer-  which follows from Eq.(7). Here R/R; is used instead of
sus 7, 7. 0n a logarithmic scale. It can be seen that all thex/\;, because Eq(A5) from the Appendix, whereN/\,)
different curves of Fig. 2 collapse in a unique straight line,=(R/R;), was taken into account. The Shannon entropy
having a slope close te- 1, which is in agreement with the measures the dispersion in the distribution of the number of
behavior predicted by the laser rate equations, i.e.(8q. laser photongor in the population inversignlf this number

To analyze the different dynamic behaviors of the systemis approximately constang will tend toward zero; if oscil-
we allow it to evolve for 500 time steps. Initially all the lations appears takes higher values. The maximum value
electrons are in the ground lee;(0)=0] and there are no would result from an equiprobable distributioB.is thus a
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0 ber of laser photons and the population inversion for two
184 different values of the system parameters, characteristic of
16 the two different regimes in which it can operate. In this

1 s case, a lattice of 300300 cells has been used in order to
14 c . . .

] ] define the behavior more clearly. In both figures, the tempo-
o . ralevolutionis shown at the left, and the evolution in a phase
fa 104 - space with the number of laser photons versus the population

8] 2000 inversion is shown at the right. Figure 5 corresponds to the
6 2667 parameter values for which the Shannon entropy is low

; a3 (bright zones in Fig. #and, after an initial gain switching
“] “* peak, the system shows a constant behavior. In phase space,
27 after an initial transient the system goes to a fixed point.
0 - —— Figure 6 corresponds to the parameters values for which the

0 2z 4 6 8 10 12 14 16 18 20 Shannon entropy is higtdark zones in Fig. #and the sys-

BIR, tem exhibits oscillations. In this particular case, the system

FIG. 4. Contour plot of the Shannon entropy of the distribution shqws damped oscillations Whlch are assaciated 1o a spiral
of the number of laser photons for a fixed valuergf10. Low trajectory towards a steady state |n.phase space. For the val-
values ofS, (bright zones indicate that the response of the system U€s Of the parameters corresponding to Fig. 6, a threshold
is nonoscillatory, while high valuelark zonesindicate an oscil- PUMpIng probability ofA;=0.0015 is found. According to
latory response. The black line is the theoretical stability curve. EQ. (A5), this meansi/R;) = (\/\;)=(0.01/0.0015), which

leads to a spiking period value predicted theoretically by Eq.
good indicator of the presence of oscillations in the system(6) of Ttsr;)=27'r/wtst},= 137.3 time steps. The average spiking
as it must be low when the number of photdos the popu-  period of the oscillations resulting from our simulations is
lation inversion is essentially constant and high when this T¢;"=(127+10) time steps, which is in good agreement
number oscillates. Figure 4 shows the presence of oscillawith the theoretical value predicted by E®).
tions above and to the right of the theoretical stability curve The CA model is also very useful for observing the evo-
(dark zones wherer,> 7. andR>R;. On the other hand, in lution of spatiotemporal patterns. Recently, quasi-
the bright zones, where,~ 7, or R<R;, the number of instantaneous transverse patterns in a broad aperture laser
laser photons does not oscillate. This is in good agreemeritave been measured for the first tifiies]. In the case of a
with the theoretical predictions of E¢7), based on the lin- CO, laser, a disordered distribution of spots, nonreproduc-
earization of the laser rate equations, and with the behavidble from shot to shot, which yields a boundary-determined
observed in real systems. Laser spiking is characteristic afegular structure when integrated in progressively longer
most solid-state and semiconductor lasers, which have a subime windows, has been found.
stantially longer decay time of the upper laser level than that Figure 7 shows some snapshots of the instantaneous trans-
of the photons in the laser cavity. This is not generally ob-verse patterns shown by the laser photon population in the
served in gas lasers, whose decay times usually have tHattice. Black color represents a cell with no photon present,

same order of magnitude. gray represents cells with one photon, and white represents
Figures 5 and 6 show the temporal evolution of the num-ells with two or more photons. Figuregay and 1b) corre-
€)) (b)
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FIG. 5. Evolution of the system for the parametexs: 0.1, 7.=8, 7,= 30, wherer, and =, are measured in time steps. Lattice: 300
X 300 cells.(a) Number of laser photons and population inversion versus timdvolution in a phase space formed by the number of laser
photons versus the population inversion.
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(@) (b)
45000 T T T T 25000 T T T T T T T T
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35000 20000 . i
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o0
c 5 15000 E
S 25000 8
© £
3 o
& 20000 5
o & 10000 | :
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FIG. 6. Evolution of the system for the parametexs:0.01, 7.=14, 7,=160, wherer, and 7, are measured in time steps. Lattice:
300X 300 cells.(@) Number of laser photons and population inversion versus tib)eEvolution in phase space.

spond to the oscillatory behavior after a transient time. Inon the value of the parameters, as can be seen by comparing
this case, the system shows spatial structures that evolve Figs. 7a) and 7b). Figures Tc) and 7d) correspond to the
time resembling wave fronts that interact destructively withnonoscillatory behavior and both figures have the same pa-
each other. The typical scale of these patterns is dependergmeters values. Figure(cf was taken at timé=50 time

FIG. 7. Instantaneous trans-
verse spatiotemporal patterns
shown by the laser photon popula-
tion in the system(a) and(b) cor-
respond to oscillatory behavior,
whereag(c) and (d) correspond to
nonoscillatory behavior. The val-

) ues of the parameters af@) \

L LT g R il 335 !J'r""'"‘!;:-"".‘ 1 =0.01, 7.=14, 7,=160; (b) A

i },ﬁ?ﬁu RTINS —0.03, =6, 7,=150; (0
h < -:h."r'l'

? e m .- . — —_ p— p— .
Ay S e % =0.1, 7,=8, 7,=30, t=50; (d)
: “ﬁ?&. e ?é':lﬁ' ___:. 3 A=0.1, 7.=8, 7,=30, t=200.

AL
T r{, iy 1'-'-'}. x , 7o, andt are measured in time

steps.
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steps, whereas Fig.(@ at timet=200 time steps. In this stant values shown in the total number of laser photons. The
case, it can be observed that the laser process is activaté&ber process is initially activated with expanding ava-
initially with expanding avalanches and then reaches a stdanches, as shown in Fig(d. When the avalanches have
tionary state at which the laser photons distribution isspread throughout the whole system, the constant steady
homogeneous. state is reached.
In conclusion, we have presented here a CA model for the
simulation of the population dynamics in a laser cavity.
V. DISCUSSION While simplified, the model is able to capture the essential
features and phenomenology encountered in lasers such as

Depending on the values of the three parametgrs, ,\ A N . .
of the system, our simulations show that two distinct characf€laxation oscillations, spiking behavior, and pattern forma-

teristic behaviors appear. The Shannon entropy of the lasdion- The CA approach for lasers is a very promising tool that
photons distribution and of the population inversion allowsC@n supplement the traditional approach based on the solu-

us to obtain the parameter ranges in which each behavidion of sets of coupled differt_—zntial gquations. Its pe_rformance
takes place. is very good, so that the simulation can be carried out on
A high Shannon entropgdark zones in Fig. dindicates a large lattices. The full parallelism of the CA can be imple-
greater dispersion in the populations than in other areas ¢f€nted on special purpose computers or in computers with
the parameters space. For these values of the parameters, {H parallel architectures, and therefore an important saving

CA model reproduces the typical kind of behavior known agn computer time can be obtained. A CA model can represent
laser spiking—the temporal evolution of the populations of &N advantage in cases in which the system of differential
laser photons and inversion electrons oscillate in a correlategduations have convergence problems, for example, stiff dif-
way, as shown in Fig. @). A series of sharp, narrow fergnnal equations. The MaxweII-B_Ioch equations tha_t de-
“spikes” can be observed, whose amplitude decreases witfiC'IP€ many laser systems are of this type. Our model is free
time. In the phase space descriptigfig. 6b)], the system from this kind of convergence problems, so it can be very

follows a spiral trajectory which converges towards a Steadyyseful for this kind of lasers. However, work must be done in

state limit point. order to test this potential application, including a quantita-
On the other hand, a low Shannon entrapyight zones tive comparison of the computing times of the CA model

in Fig. 4) indicates a smaller dispersion in the populations.V'SUS the numerical integration of the full set of Maxwell-

For these parameter values, the behavior shown by the cRloch equations. _
model corresponds to aonstant regime-after an initial In the current state of our work, we see no obstacle to fine

transient, the total number of laser photons and inversiofiin€ the proposed CA model in order to meet the character-
electrons remain approximately constant, as is shown in FigStics of any particular laser system. This must be addressed
5(a). In the phase space description, Figb)5 after a short M the near future. Additionally, we hope that similar models

transient the system reaches a fixed’ point. can be used to study other problems of current interest, such

Our model is successful in showing either one or the othefS chaotic laser dynamid45] or the dynamics of a two-
of these two regimes, depending on the characteristic decd}/oton lasef16].
times involved. Laser spiking appears generally in situations
in which the lifetime of the electrons in the excited state is ACKNOWLEDGMENT
substantially longer than the lifetime of the laser photons,
whereas the constant regime mostly appears when both |if(?-|
times are of the same order of magnitude. u
The CA model can be applied during the interesting pe-
riod of strong spiking, for which there is no simple analytic APPENDIX: RELATIONSHIP BETWEEN THE PUMPING
solution for the laser rate equations and the traditional ap- RATE RAND THE PUMPING PROBABILITY A
proach relies on the numerical integration of the system of

differential equations. fate equations, is related to the pumping probabNityntro-

In Fig. 7, we can observe that the kind of spatiotempora ) . .
transverse patterns shown by the laser photons populatio%uced in the CA modeR is defined as the number of elec-

depend on the population dynamics regime. For the lasef°"S tha’g are eXC|t_ed from the ground stﬁ'gato the statee, L
spiking regime, spatiotemporal structures appear in the forrRe" unit time, considered as a constant in the rate equations:
of propagating wave fronts, Figs(&f and 7b). The charac-
teristic scale of these structures depends on the three param- - _3
eters of the system. It is remarkable that our rather simple dt
and generic laser model produces spatiotemporal structures
similar to those observed experimentally and with the nu- In the CA model, pumping is introduced as a probabilistic
merical integration of very detailed Maxwell-Bloch equa- process, wherg is the pumping probability per unit time of
tions modeld13,14. an electron from statg, to E;. This means that if there are
On the other hand, when the system is in the constam, electrons inE,, then the number of excitations in a time
regime, there is a homogeneous distribution of laser photonénterval dt will be n\dt. So the population of staté, de-
Fig. 7(d). This is in agreement with the approximately con- creases as

J. L. Guisado would like to thank Ramon Risco for help-
suggestions and discussions.

Let us see how the pumping ra® included in the laser

dn
——> = na=Rt (A1)
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dno=—\dtn, = ng=nge M. (A2)

If we assume thahs is initially unpopulated, themoi

=ngy+ N3 and the population dE; will increase with pump-
ing as

N3=ng —No=nNo(1— e ™). (A3)
Then, the pumping ratR will be
dng
—_ S _ —\t
R T Ange (A4)

In general, if the only process in the system is the pump
ing, R will decrease exponentially with time as the popula-
tion of electrons inE, decreases. But the electrons pumped

to level E; decay down again to levet, repopulating the

PHYSICAL REVIEW E67, 066708 (2003

ground level, andas long as the pumping probability is
small after a transient periodR stabilizes to a constant
value:

R= Ang =const, (A5)

where No, stands for the approximately constant value to-

ward which the population of levél, tends. So after a tran-
sient period, there is a linear relationship between the pump-
ing probability considered in our model and the constant
pumping rate considered in the laser rate equations. This
means that the pumping probabilities from the CA model
must follow Eq.(5) with the exception of the value of the
constantk:

1

)\t_

= . (AB)
K'r, 7
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