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Cellular automaton model for the simulation of laser dynamics
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The classical modeling approach for laser study relies on the differential equations. In this paper, a cellular
automaton model is proposed as an alternative for the simulation of population dynamics. Even though the
model is simplified it captures the essence of laser phenomenology:~i! there is a threshold pumping rate that
depends inversely on the decaying lifetime of the atoms and the photons; and~ii ! depending on these lifetimes
and on the pumping rate, a constant or an oscillatory behavior can be observed. More complex behaviors such
as spiking and pattern formation can also be studied with the cellular automaton model.
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I. INTRODUCTION

In a laser system, the interactions among simple ato
and the radiation they produce can give rise to coopera
phenomena@1#. However, the usual approach for its study
based on very detailed microscopical equations, which so
how mask the action of such cooperative properties. In
study, a simple cellular automaton model is presented, wh
reproduces much of the laser phenomenology, special a
tion being focused on these self-organizing cooperative
fects. Our model is interesting in that it illustrates the em
gence of laser properties as cooperative phenomena bas
simple underlying rules. It can also be useful in calculat
laser output in situations which are difficult to treat with t
traditional approach based on the resolution of detailed
ferential equations@2,3#. One example is when dealing wit
complex boundary conditions or numerical difficulties in t
integration of the equations.

Cellular automata@4,5# are a class of spatially and tem
porally discrete mathematical systems, characterized by l
interaction and synchronous dynamical evolution. They h
the ability to generate a very complex behavior from sets
components that interact locally with relatively simple rule
They provide good models for a wide variety of physic
systems@6,7# exhibiting cooperative phenomena, such
magnetization in solids@8#, reaction-diffusion processes@9#,
fluid dynamics for complex situations@10#, growth phenom-
ena @11#, etc. As an example of an application particula
close to laser dynamics, a cellular automaton model has b
recently applied to successfully study the excited-state
namics of atomic oxygen, which play a prominent role
creating the aurora borealis@12#.

This paper is organized as follows. Section II present
brief review of laser dynamics including the laser pheno
enology that our model attempts to reproduce. Section
describes the cellular automaton model. The simulations
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carried out and their results are presented in Sec. IV. Fina
the conclusions of this study are explained in Sec. V.

II. LASER DYNAMICS

A laser is a device that generates or amplifies electrom
netic radiation based on the stimulated emission phen
enon. The basic components of a laser system are~1! a laser
medium—an appropriate collection of atoms, molecules, io
or a semiconductor crystal~these elements will generally b
referred to as ‘‘atoms’’!; ~2! a pumping processthat excites
electrons from these atoms to upper energy levels, du
some external electrical, optical, or chemical energy sou
~3! optical feedback elementsthat reflect repeatedly the ra
diation beam into the laser medium~in a laser oscillator!, or
allow it to pass only once through it~in a laser amplifier!.

The working principle of laser isstimulated emission, i.e.,
an excited atom can decay to a lower state stimulated by
presence of a photon with energy equal to the differe
between the two energy levels, emitting a second pho
with the same frequency and propagating in the same di
tion. The process of absorption has the same probability
stimulated emission dominates only when a population
version is induced in the material by some pumpi
mechanism.

A simplified but yet realistic model of many real lasers
the four-level laser system shown in Fig. 1. The populat
dynamics of a laser~the variation with time in the number o
laser photons and in the population inversion, or numbe
electrons in the upper laser level minus the number of e
trons in the lower laser level! is usually described as a sys
tem of coupled differential equations calledlaser rate
equations.

The rate equations can be put into their simplest for
when the lifetimes ofE1 and E3 level electrons are negli
gible as compared to the lifetime ofE2 level electrons.
Therefore theE1 level electron population isN1.0, and
thus the population inversion is approximately equal to
upper laser level populationN(t)5N2(t)2N1(t).N2(t);
and the absorption of laser photons by electrons at levelE1 is
negligible. Additionally, the pumping into levelE2 can be
described by a simple pumping rateR.

Under these assumptions, which are quite realistic, o
©2003 The American Physical Society08-1
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levels E0 and E2 can be considered, and the rate equatio
are a system of two coupled differential equations@2,3#:

dn~ t !

dt
5KN~ t !n~ t !2

n~ t !

tc
, ~1!

dN~ t !

dt
5R2

N~ t !

ta
2KN~ t !n~ t !. ~2!

HereR is the pumping rate,ta is the decay time of the uppe
laser level (E2), tc is the decay time of the laser photons
the cavity, andK is a constant called ‘‘coupling constant
The first equation reflects the variation with time of the nu
ber of laser photons,n(t), which is related to the laser bea
intensity. The second equation represents the temporal v
tion of the population inversionN(t). This is a set of two
coupled nonlinear equations due to the presence of the p
uct termKN(t)n(t).

Laser operation does not generally produce a smooth
continuous response, but exhibits different kinds of char
teristic transient or modulation behaviors such as spiki
relaxation oscillation, gain switching.Laser spiking, in par-
ticular, refers to the pulses that typically occur during t
initial turn-on phase of many lasers. In these cases, the l
signal presents a sequence of sharp, large-amplitude na
pulses or ‘‘spikes.’’ Each spike is typically a fraction of
microsecond wide, and they are separated by a few mi
seconds. In some lasers, the spiking behavior jumps in
erratic way. In other cases, or under more stable conditio
it is possible to obtain a more regular spiking behavior,
which the amplitude of the spikes gradually damps out w
time into a relaxation process. These are sometimes ca
relaxation oscillations, and include lasers with large
amplitude oscillations when enough time has elapsed for
amplitude to relax. This kind of behavior varies for the d
ferent types of lasers. The spiking oscillatory response

FIG. 1. Schematic view of a four-level laser system.
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characteristic of most solid-state and semiconductor las
which have a substantially longer decay time of the up
laser level than the decay time of the photons in the la
cavity: ta@tc . Laser spiking and relaxation oscillations a
not observed, on the other hand, in most gas lasers, w
usually have decay times of the same order of magnitu
ta'tc .

The steady-state solution to the rate equations above
threshold~i.e., with laser emission! is

Ns5
1

Ktc
, ~3!

ns5tcS R2
1

Ktatc
D . ~4!

In order for this solution to have a physical meaning, t
number of photons,n, has to be greater than zero. The min
mum value ofR producing a laser emission in the cavit
known asthreshold pumping rate Rt is found as

Rt5
1

Ktatc
. ~5!

For the case when the spiking behavior in the laser
relaxed to small-amplitude fluctuations, a linearized sm
signal analysis of the rate equations about the steady-s
solution can be carried out. Following two different situ
tions arise.

~a! Nonspiking lasers: For lasers in whichta'tc , the
solutions forn(t) andN(t) are real exponentials. The syste
is overdamped and the response of the laser to any pertu
tion dies out exponentially towards the steady state. The
lution is a stable node.

~b! Relaxation oscillations: When ta@tc the solutions
have an exponentially damped sinusoidal form towards
steady-state values. The system responds to any perturb
exhibiting relaxation oscillations. The solution is a stable
cus. Therelaxation-oscillation frequency, often referred to as
spiking frequency,is found as

vsp5AS 1

2 ta

R

Rt
D 2

2
1

ta tc
S R

Rt
21D . ~6!

The necessary condition for the appearance of the re
ation oscillations is that the quantity inside the square roo
positive, yielding

ta

tc
.

S R

Rt
D 2

4S R

Rt
21D . ~7!

III. CELLULAR AUTOMATA MODEL

Cellular automata~CA! are fully discrete dynamical sys
tems, where the states are chosen in a finite set and dis
uted on a discrete regular lattice, and the time evolution
run synchronously in all the sites of this lattice and each
8-2
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CELLULAR AUTOMATON MODEL FOR THE SIMULATION . . . PHYSICAL REVIEW E67, 066708 ~2003!
changes its state according to a local rule that only depe
upon its neighboring values. Despite the simplicity of th
construction, CA are found to be capable of a diverse
complex behavior and are often used as a prototype for
analysis of the spontaneous emergence of ordered beh
in spatially extended systems that are locally coupled.

A. States of the cells

We consider a system composed of a square lattice
Nc5L3L cells with periodic boundary conditions. Tw
variablesai(t) andci(t) are associated to each node of th
lattice. The first one,ai(t), represents the state of the ele
tron in node i at a given timet. An electron in the laser
ground state takes the valueai(t)50, while an electron in
the upper laser state takes the valueai(t)51. A temporal
variableãi(t)P$0,1,2, . . . ,ta% is also introduced in order to
take into account the finite timeta , for which an electron
can remain in the upper state. If the electron is in the b
state, thenãi(t)50, otherwiseãi(t11)5ãi(t)11 until the
maximum valueta is reached and thenãi(t11)50.

The second variableci(t)P$0,1,2, . . . ,M % represents the
number of photons in nodei at time t. A large enough uppe
value ofM is taken to avoid saturation of the system. The
is also another temporal variablec̃i

j (t)P$0,1,2, . . . ,tc%,
which measures the amount of time since a photonj
P$1,2, . . . ,M % was created at nodei. tc is the lifetime of
each photon. For a given photonj, c̃i

j (t11)5 c̃i
j (t)11 until

the lifetimetc is reached and thenc̃i
j (t11)50.

B. Neighborhood

The neighborhood considered is theMoore neighborhood,
each cell having nine neighbors: the cell itself, its four ne
est neighbors~situated in the positions north, south, east, a
west!, and the four next neighbors~in the positions northeast
southeast, northwest, and southwest!.

C. Transition rules

The time evolution of the CA is given by a set of rule
which determines the state of any particular cell of the s
tem at timet11, depending on the state of the cells includ
in its neighborhood at timet. The evolution of the tempora
variablesãi(t) andc̃i

j (t) was described beforehand. Here w
describe only the evolution ofai(t) andci(t).

~i! If ai(t)50, then

ai~ t11!51 with probabilityl.

~ii ! If ai(t)51 andG i(t)5(neighborsci(t).d, then

ci~ t11!5ci~ t !11,

ai~ t11!50,

whereG i is the number of photons included in the neighb
hood of the celli andd is a threshold value, which has bee
taken to be 1 in our simulations.
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~iii ! If ci(t).0 and there is one photonj for which
c̃i

j (t)5tc , then

ci~ t11!5ci~ t !21.

~iv! If ai(t)51 andãi(t)5ta , then

ai~ t11!50.

These transition rules represent the different physical p
cesses that function at the microscopical level in a laser
tem. Rule~i! represents the pumping process. Rule~ii ! mod-
els the stimulated emission—if the electronic state of a c
has a value ofai(t)51 and the number of laser photons
the neighborhood is greater than a certain threshold, the
the timet11 a new photon will be created in that cell an
the electron will decay to the ground level. Rule~iii ! repre-
sents the photon decay. Rule~iv! represents the electron de
cay in a way similar to rule~iii !—after timeta of the excited
electrons, those electrons will decay to the ground level.
simplify the model as much as possible, we consider t
decay to be entirely nonradiative, i.e., spontaneous emis
is not taken into account. Also, as in an ideal four-level la
the population of levelE1 is negligible, stimulated absorp
tion has not been considered.

Additionally, in order to represent the noise level o
served in practice~typically of the order of one noise photo
per cavity mode!, we introduce a small continuous nois
level of random photons in the laser mode at every time s
This is done by settingci(t11)5ci(t)11 for a number of
cells smaller than 0.01% of the total number of system ce
whose positions are randomly chosen. This noise~along with
the population inversion induced by pumping! is responsible
for the initial start up of the laser process, and can prev
the eventual extinction of this process, in case the numbe
laser photons drops down to negligible values.

IV. SIMULATIONS

The simulations were carried out using lattices of 2
3200 and 3003300 cells. Three parameters determine t
response of the system: the pumping probabilityl, the life-
time of photons (tc), and the lifetime of excited electron
(ta). The pumping probabilityl introduced in the CA mode
is linearly related to the constant pumping rateR included in
the rate equations, as explained in the Appendix. Thus
laser rate equations’ prediction@Eq. ~5!# for the dependence
of threshold pumping rateRt with the lifetimesta andtc can
be expressed for the threshold pumping probabilityl t as

l t5
1

K8tatc

, ~8!

whereK8 is a constant.
Figure 2 shows the threshold pumping probabilityl t ver-

sus the lifetime of the upper laser level (ta) and the cavity
lifetime tc . Each point has been obtained in the followin
manner. After a transient time, the system evolves for 2
time steps and the average number of laser photons (n̄) is
8-3
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recorded. For each pair of valuestc andta , the procedure is
repeated for values of the pumping probabilitiesl ranging
from 0.0001 to 0.1. If the laser action does not initiate in t
system,n̄ is approximately equal to the number of noi
photons (nnp) introduced. When the laser action starts, ph
tons are produced by stimulated emission@via rule ~ii !#, and
the average number of photons is greater thannnp . Thus,l t
can be computed as the minimum value of the pump
probability for which the average number of photons
higher than a given reference valuenmin . In our simulations,
we have takennmin51.25nnp . The number of noise photon
(nnp) is the number of noise photons introduced in each ti
step multiplied by the lifetime of each laser photon.

Figure 3 shows the threshold pumping probabilityl t ver-
susta tc on a logarithmic scale. It can be seen that all t
different curves of Fig. 2 collapse in a unique straight lin
having a slope close to21, which is in agreement with the
behavior predicted by the laser rate equations, i.e., Eq.~8!.

To analyze the different dynamic behaviors of the syste
we allow it to evolve for 500 time steps. Initially all th
electrons are in the ground level@ai(0)50# and there are no

FIG. 2. Threshold pumping probabilityl t from the CA laser
model: ~a! l t dependence on the upper laser level lifetimeta for
different values of the cavity lifetimetc ; ~b! l t dependence ontc

for different values ofta . Both figures are plotted on a logarithm
scale.ta andtc are measured in time steps.
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laser photons present@ci(0)50#, except a small fraction
(0.01%) of noise photons. In each experiment, the to
number of laser photons,n(t)5( i 51

Nc ci(t), and the total
number of electrons in the upper laser state~population in-
version!, N(t)5( i 51

Nc ai(t) are measured. In order to classi
the range of values of the parameters for which oscillatio
or a constant regime inn(t), andN(t) appear, the Shanno
entropy S of the distribution of values taken byn(t) and
N(t) is calculated. This is carried out by dividing the ran
of values taken in 103 intervals, and computing the fre
quency f i at which the magnitude value lies inside eve
particular nonvoid intervali. The Shannon entropy is ex
pressed as

S~l,tc ,ta!52(
i 51

m

f i log2 f i , ~9!

wherem is the number of nonvoid intervals. Figure 4 show
the contour plot of the Shannon entropy of the values dis
bution of the number of laser photons,Sc , for a fixed value
of tc510. Similar plots are obtained for other values oftc .
The black line is the theoretical stability curve:

ta

tc
5

S R

Rt
D 2

4S R

Rt
21D ,

which follows from Eq.~7!. Here R/Rt is used instead of
l/l t , because Eq.~A5! from the Appendix, where (l/l t)
5(R/Rt), was taken into account. The Shannon entro
measures the dispersion in the distribution of the numbe
laser photons~or in the population inversion!. If this number
is approximately constant,S will tend toward zero; if oscil-
lations appear,S takes higher values. The maximum valu
would result from an equiprobable distribution.S is thus a

FIG. 3. Dependence of the threshold pumping probabilityl t

from the CA laser model versustatc , plotted on a logarithmic
scale. The dots correspond to the results of the simulations and
continuous line to the theoretical prediction of the laser rate eq
tions, i.e., Eq.~8!. ta andtc are measured in time steps.
8-4
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CELLULAR AUTOMATON MODEL FOR THE SIMULATION . . . PHYSICAL REVIEW E67, 066708 ~2003!
good indicator of the presence of oscillations in the syste
as it must be low when the number of photons~or the popu-
lation inversion! is essentially constant and high when th
number oscillates. Figure 4 shows the presence of osc
tions above and to the right of the theoretical stability cur
~dark zones!, whereta.tc andR.Rt . On the other hand, in
the bright zones, whereta'tc or R<Rt , the number of
laser photons does not oscillate. This is in good agreem
with the theoretical predictions of Eq.~7!, based on the lin-
earization of the laser rate equations, and with the beha
observed in real systems. Laser spiking is characteristic
most solid-state and semiconductor lasers, which have a
stantially longer decay time of the upper laser level than t
of the photons in the laser cavity. This is not generally o
served in gas lasers, whose decay times usually have
same order of magnitude.

Figures 5 and 6 show the temporal evolution of the nu

FIG. 4. Contour plot of the Shannon entropy of the distributi
of the number of laser photons for a fixed value oftc510. Low
values ofSc ~bright zones! indicate that the response of the syste
is nonoscillatory, while high values~dark zones! indicate an oscil-
latory response. The black line is the theoretical stability curve.
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ber of laser photons and the population inversion for t
different values of the system parameters, characteristi
the two different regimes in which it can operate. In th
case, a lattice of 3003300 cells has been used in order
define the behavior more clearly. In both figures, the tem
ral evolution is shown at the left, and the evolution in a pha
space with the number of laser photons versus the popula
inversion is shown at the right. Figure 5 corresponds to
parameter values for which the Shannon entropy is l
~bright zones in Fig. 4! and, after an initial gain switching
peak, the system shows a constant behavior. In phase s
after an initial transient the system goes to a fixed po
Figure 6 corresponds to the parameters values for which
Shannon entropy is high~dark zones in Fig. 4! and the sys-
tem exhibits oscillations. In this particular case, the syst
shows damped oscillations which are associated to a s
trajectory towards a steady state in phase space. For the
ues of the parameters corresponding to Fig. 6, a thres
pumping probability ofl t50.0015 is found. According to
Eq. ~A5!, this means (R/Rt)5(l/l t)5(0.01/0.0015), which
leads to a spiking period value predicted theoretically by E
~6! of Tsp

th52p/vsp
th5137.3 time steps. The average spikin

period of the oscillations resulting from our simulations
Tsp

sim5(127610) time steps, which is in good agreeme
with the theoretical value predicted by Eq.~6!.

The CA model is also very useful for observing the ev
lution of spatiotemporal patterns. Recently, qua
instantaneous transverse patterns in a broad aperture
have been measured for the first time@13#. In the case of a
CO2 laser, a disordered distribution of spots, nonreprod
ible from shot to shot, which yields a boundary-determin
regular structure when integrated in progressively lon
time windows, has been found.

Figure 7 shows some snapshots of the instantaneous t
verse patterns shown by the laser photon population in
lattice. Black color represents a cell with no photon prese
gray represents cells with one photon, and white repres
cells with two or more photons. Figures 7~a! and 7~b! corre-
0
ser
FIG. 5. Evolution of the system for the parameters:l50.1, tc58, ta530, wheretc andta are measured in time steps. Lattice: 30
3300 cells.~a! Number of laser photons and population inversion versus time.~b! Evolution in a phase space formed by the number of la
photons versus the population inversion.
8-5
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FIG. 6. Evolution of the system for the parameters:l50.01, tc514, ta5160, wheretc and ta are measured in time steps. Lattic
3003300 cells.~a! Number of laser photons and population inversion versus time.~b! Evolution in phase space.
I
e
ith
d

aring

pa-
spond to the oscillatory behavior after a transient time.
this case, the system shows spatial structures that evolv
time resembling wave fronts that interact destructively w
each other. The typical scale of these patterns is depen
06670
n
in

ent

on the value of the parameters, as can be seen by comp
Figs. 7~a! and 7~b!. Figures 7~c! and 7~d! correspond to the
nonoscillatory behavior and both figures have the same
rameters values. Figure 7~c! was taken at timet550 time
-
s
-

,

-

FIG. 7. Instantaneous trans
verse spatiotemporal pattern
shown by the laser photon popula
tion in the system.~a! and~b! cor-
respond to oscillatory behavior
whereas~c! and ~d! correspond to
nonoscillatory behavior. The val
ues of the parameters are~a! l
50.01, tc514, ta5160; ~b! l
50.03, tc56, ta5150; ~c! l
50.1, tc58, ta530, t550; ~d!
l50.1, tc58, ta530, t5200.
tc , ta , andt are measured in time
steps.
8-6
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CELLULAR AUTOMATON MODEL FOR THE SIMULATION . . . PHYSICAL REVIEW E67, 066708 ~2003!
steps, whereas Fig. 7~d! at time t5200 time steps. In this
case, it can be observed that the laser process is activ
initially with expanding avalanches and then reaches a
tionary state at which the laser photons distribution
homogeneous.

V. DISCUSSION

Depending on the values of the three parametersta ,tc ,l
of the system, our simulations show that two distinct char
teristic behaviors appear. The Shannon entropy of the l
photons distribution and of the population inversion allo
us to obtain the parameter ranges in which each beha
takes place.

A high Shannon entropy~dark zones in Fig. 4! indicates a
greater dispersion in the populations than in other area
the parameters space. For these values of the parameter
CA model reproduces the typical kind of behavior known
laser spiking—the temporal evolution of the populations
laser photons and inversion electrons oscillate in a correl
way, as shown in Fig. 6~a!. A series of sharp, narrow
‘‘spikes’’ can be observed, whose amplitude decreases w
time. In the phase space description@Fig. 6~b!#, the system
follows a spiral trajectory which converges towards a stea
state limit point.

On the other hand, a low Shannon entropy~bright zones
in Fig. 4! indicates a smaller dispersion in the populatio
For these parameter values, the behavior shown by the
model corresponds to aconstant regime—after an initial
transient, the total number of laser photons and invers
electrons remain approximately constant, as is shown in
5~a!. In the phase space description, Fig. 5~b!, after a short
transient the system reaches a fixed point.

Our model is successful in showing either one or the ot
of these two regimes, depending on the characteristic de
times involved. Laser spiking appears generally in situati
in which the lifetime of the electrons in the excited state
substantially longer than the lifetime of the laser photo
whereas the constant regime mostly appears when both
times are of the same order of magnitude.

The CA model can be applied during the interesting
riod of strong spiking, for which there is no simple analy
solution for the laser rate equations and the traditional
proach relies on the numerical integration of the system
differential equations.

In Fig. 7, we can observe that the kind of spatiotempo
transverse patterns shown by the laser photons popula
depend on the population dynamics regime. For the la
spiking regime, spatiotemporal structures appear in the f
of propagating wave fronts, Figs. 7~a! and 7~b!. The charac-
teristic scale of these structures depends on the three pa
eters of the system. It is remarkable that our rather sim
and generic laser model produces spatiotemporal struct
similar to those observed experimentally and with the
merical integration of very detailed Maxwell-Bloch equ
tions models@13,14#.

On the other hand, when the system is in the cons
regime, there is a homogeneous distribution of laser phot
Fig. 7~d!. This is in agreement with the approximately co
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stant values shown in the total number of laser photons.
laser process is initially activated with expanding av
lanches, as shown in Fig. 7~c!. When the avalanches hav
spread throughout the whole system, the constant ste
state is reached.

In conclusion, we have presented here a CA model for
simulation of the population dynamics in a laser cavi
While simplified, the model is able to capture the essen
features and phenomenology encountered in lasers suc
relaxation oscillations, spiking behavior, and pattern form
tion. The CA approach for lasers is a very promising tool th
can supplement the traditional approach based on the s
tion of sets of coupled differential equations. Its performan
is very good, so that the simulation can be carried out
large lattices. The full parallelism of the CA can be impl
mented on special purpose computers or in computers
full parallel architectures, and therefore an important sav
in computer time can be obtained. A CA model can repres
an advantage in cases in which the system of differen
equations have convergence problems, for example, stiff
ferential equations. The Maxwell-Bloch equations that d
scribe many laser systems are of this type. Our model is
from this kind of convergence problems, so it can be ve
useful for this kind of lasers. However, work must be done
order to test this potential application, including a quanti
tive comparison of the computing times of the CA mod
versus the numerical integration of the full set of Maxwe
Bloch equations.

In the current state of our work, we see no obstacle to fi
tune the proposed CA model in order to meet the charac
istics of any particular laser system. This must be addres
in the near future. Additionally, we hope that similar mode
can be used to study other problems of current interest, s
as chaotic laser dynamics@15# or the dynamics of a two-
photon laser@16#.
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APPENDIX: RELATIONSHIP BETWEEN THE PUMPING
RATE R AND THE PUMPING PROBABILITY l

Let us see how the pumping rateR, included in the laser
rate equations, is related to the pumping probabilityl, intro-
duced in the CA model.R is defined as the number of elec
trons that are excited from the ground stateE0 to the stateE3
per unit time, considered as a constant in the rate equati

R5
dn3

dt
⇒ n35Rt. ~A1!

In the CA model, pumping is introduced as a probabilis
process, wherel is the pumping probability per unit time o
an electron from stateE0 to E3. This means that if there ar
n0 electrons inE0, then the number of excitations in a tim
interval dt will be nldt. So the population of stateE0 de-
creases as
8-7
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dn052ldtn0 ⇒ n05n0i
e2lt. ~A2!

If we assume thatn3 is initially unpopulated, thenn0i

5n01n3 and the population ofE3 will increase with pump-
ing as

n35n0i
2n05n0i

~12 e2lt!. ~A3!

Then, the pumping rateR will be

R5
dn3

dt
5ln0i

e2lt. ~A4!

In general, if the only process in the system is the pum
ing, R will decrease exponentially with time as the popu
tion of electrons inE0 decreases. But the electrons pump
to level E3 decay down again to levelE0 repopulating the
se
n

,

e,

06670
-
-
d

ground level, and~as long as the pumping probability i
small! after a transient period,R stabilizes to a constan
value:

R5ln0c
.const, ~A5!

where n0c
stands for the approximately constant value

ward which the population of levelE0 tends. So after a tran
sient period, there is a linear relationship between the pu
ing probability considered in our model and the const
pumping rate considered in the laser rate equations. T
means that the pumping probabilities from the CA mod
must follow Eq.~5! with the exception of the value of th
constantK:

l t5
1

K8tatc

. ~A6!
tti,
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